메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현미 (아주대학교) 장정아 (아주대학교) 권수민 (한국교통안전공단) 하연화 (한국교통안전공단)
저널정보
한국자동차안전학회 자동차안전학회지 자동차안전학회지 제16권 제4호
발행연도
2024.12
수록면
69 - 75 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As Level 4 autonomous vehicles approach widespread adoption, external Human-Machine Interfaces (eHMI) have been proposed as effective mediators to replace the communication role of human drivers. This study investigates pedestrians’ cognitive reaction times to eHMI-equipped vehicles and proposes a structured information delivery method for effective communication between autonomous vehicles and pedestrians. A virtual reality (VR) experiment with 57 participants was conducted, where participants observed an LED-equipped vehicle decelerating from 35 ㎞/h to a full stop over 50 meters in 10.62 seconds. Participants recorded their reaction times at three key moments: recognizing the vehicle, identifying it as autonomous, and judging its intention to stop. Based on these results, a three-stage information delivery method was developed. Stage 1 introduces vehicle control status at 30 meters to help pedestrians “recognize” it as autonomous. Stage 2 provides acceleration or deceleration cues at 15 meters to allow pedestrians to “judge” its movement. Stage 3 conveys intent to yield or stop at 11 meters, enabling pedestrians to “respond” confidently. This stepwise approach ensures continuous assessment of the vehicle’s state and intentions, affording pedestrians sufficient time to make informed decisions and enhancing their confidence in road-crossing scenarios. This study contributes to the design of eHMI by incorporating actual pedestrian cognitive reaction times, offering valuable insights for improving road safety in the era of autonomous vehicles and promoting pedestrian safety.

목차

ABSTRACT
1. 서론
2. 보행자 인지반응시간 측정
3. eHMI의 정보 제공 방법 설계
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092147566