메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jiyeon Kim (Pukyong National University) Seokmin Lee (Pukyong National University) Jae-Il Kim (Pukyong National University) Jimin Hyun (Pukyong National University) Bomi Ryu (Pukyong National University)
저널정보
한국해양바이오학회 한국해양바이오학회지 한국해양바이오학회지 제16권 제2호
발행연도
2024.12
수록면
161 - 170 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study explores advancements in marine omics technologies and the emerging potential of marine glycomics. The ocean, covering over 70% of Earth's surface, hosts diverse organisms that play crucial ecological roles. Understanding their genetic, proteomic, and metabolomic profiles is essential for biodiversity conservation and sustainable resource management. Omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, are pivotal in marine biology, offering deep insights into complex biological processes. This research reviews studies from 2020 to 2024 that utilize multi-omics approaches, highlighting their contributions to marine biodiversity conservation, resource management, and ecological response strategies. Furthermore, the study emphasizes the importance of marine glycomics in understanding cell interactions and immune responses within marine ecosystems. Marine glycomics holds promise for developing new therapeutics, biomaterials, and biotechnological applications. In conclusion, integrating omics and glycomics research is key to advancing marine biology and ensuring sustainable marine ecosystem management. This study advocates for continued investment in marine glycomics to unlock new possibilities in understanding and preserving marine biodiversity.

목차

Abstract
Introduction
Marine Microorganisms (Bacteria and Microalgae)
Marine Invertebrates
Marine Vertebrates(Fish)
Marine macroalgae
Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092360774