메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chi Yoon Jeong Youngmi Song Sungyong Shin Mooseop Kim
저널정보
한국전자통신연구원 [ETRI] ETRI Journal ETRI Journal 제47권 제1호
발행연도
2025.2
수록면
112 - 122 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Pitch estimation is the task of finding the most conspicuous frequency in a complex audio signal. Many methods that use deep neural networks have sig-nificantly increased the accuracy of pitch estimation; however, their real-time performance results were achieved on high-performance devices. Because pitch estimation is widely used in real-time applications on low-power devices, we propose an efficient method for estimating pitch on edge devices. The net-work architecture of the proposed method uses a depth-scaling strategy and fully leverages convolutional networks. We further introduce a channel atten-tion mechanism to increase accuracy without increasing computational over-head. We compared the proposed model with state-of-the-art (SOTA) and conventional methods using two public datasets. The experimental results show that the proposed method has a better classification accuracy than FCNF0++, which is the best performing SOTA model. Furthermore, it reduces the processing time obtained by FCNF0++ on a personal computer and two edge devices by 48% on average. These experimental results confirm that the proposed method efficiently classifies pitch on edge devices.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0