메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제10권 제2호
발행연도
2004.11
수록면
79 - 88 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이메일 사용이 보편화됨에 따라 점차 수신되는 메일의 량이 증가하고 있다. 이러한 메일 량의 중가는 사용자로 하여금 이메일을 좀 더 효율적으로 분류할 수 있는 방법을 필요하게 한다. 그러나 현재의 이메일 분류는 규칙기반, 베이시안, SVM 등을 이용하여 스팸메일을 필터링 하는 이원분류가 주로 연구되고 있다. 이외에도 다원분류에 대 한 연구로는 클러스터링을 이용한 방법이었으나, 이는 단순히 유사도에 의해 메일을 그룹화 하는 수준이다 . 본 논문에서는 벡터모델의 유사도를 기반으로 한 자동 카테고리 생성 방법과 동적분류체계 방법을 결합하여 새로운 이 때일 자동 분류 방법을 제안했다. 본 논문에서 제안한 방법은 이메일을 자동으로 다원분류하며 대량의 메일도 효율 적으로 관리할 수 있다 . 또한 메일을 동적으로 재분류 할 수 있게 함으로써 정확율을 높였다.

목차

초록

1. 서론

2. 관련연구

3. 유사도 계산을 위한 벡터 모델

4. 동적분류체계 방법

5. 자동 이메일 분류 방법

6. 실험 및 분석

7. 결론

Acknowledgment

참고문헌

Abstract

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-014417832