메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보보호학회 정보보호학회논문지 情報保護學會論文誌 Vol.14 No.2
발행연도
2004.4
수록면
23 - 33 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷 환경의 급속한 발전으로 인하여 이메일을 통한 메시지 교환은 급속히 증가하고 있다. 그러나 이메일의 편리성에도 불구하고 개인이나 기업에서는 스팸메일로 인한 시간과 비용의 낭비가 크게 증가하고 있다. 이러한 스팸메일에 대한 문제들을 해결하기 위하여 많은 방법들이 연구되고 있으며, 대표적인 방법으로 키워드를 이용한 패턴매칭이나 나이브 베이지안 방식과 같은 확률을 이용한 방법들이 있다.
본 논문에서는 기존의 연구에 대한 문제점을 보완하기 위하여 패턴 분류문제에 있어서 우수한 성능을 보이는 Support Vector Machine을 사용하여 정상적인 메일과 스팸메일을 분류하는 방안을 제시하였으며, 특히 n-Gram을 사용하여 생성된 색인어와 단어사전을 학습데이터 생성에 사용함으로서 효율적인 학습을 수행하도록 하였다. 결론에서는 제안된 방법에 대한 성능을 검증하기 위하여 기존의 연구 결과와 비교함으로서 제안된 방법의 성능을 검증하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. n-Gram 기반의 색인 방법 연구
Ⅳ. SVM 연구
Ⅴ. 스팸메일 필터링 방안
Ⅵ. SVM을 통한 스팸메일 필터링 실험 및 결과
Ⅶ. 결론
참고문헌
〈著者紹介〉

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015936515