메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 한국지능정보시스템학회 2005년 춘계학술대회논문집
발행연도
2005.5
수록면
240 - 249 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
사용자 맞춤 서비스를 위하여 온라인 상에서 사용자의 관심 분야를 파악하고자 하는 경우에는 적은 수의 훈련 예제로 효율적인 학습이 가능한 능동적 학습이 적절하다. 능동적 학습을 효과적으로 적용하기 위하여 사용자에게 문의할 가치가 높은 예제를 선정하는 것도 중요하지만, 사용자 편의를 위해서는 문의 횟수를 가능한 최소화하여야 한다. 문의 횟수를 줄이면서도 많은 수의 훈련 예제를 획득하기 위해서는 복수의 문의 예제들을 사용자에게 한꺼번에 제시하고 그 관심 여부를 표현하게 하는 것이 효과적이다. 본 논문에서는 능동적 학습 적용시 사용자에게 문의할 가치가 높은 복수 문의 예제들을 효과적으로 선정하기 위하여 가중치 반영 군집화를 적용하는 방안을 제안한다. 본 제안 방안은 먼저 각 예제의 문의 예제로서의 가치를 파악하고 이를 가중치로 삼아 군집화를 수행하여 상대적으로 유사한 예제들의 집합을 구성한다. 이어서 생성된 각각의 군집에서 가장 보편적인 예제를 문의 예제로 선정하면 선정된 각각의 문의 예제는 문의할 가치가 높으면서 함께 문의하게 될 예제들은 서로 충분히 달라 학습에 보다 유용하게 사용할 수 있는 훈련 예제들을 얻을 수 있다. 문서 분류 문제를 대상으로 본 제안 방안을 실험한 결과, 단순히 문의 가치가 높은 복수의 예제들을 함께 문의할 예제들로 선정하는 방안에 비해 학습 성능이 뛰어났으며, 한 번에 문의하는 예제 수를 증가시키더라도 분류기의 성능 저하가 적음을 확인하였다.

목차

요약

1. 서론

2. 관련 연구

3. 군집화 기법을 이용한 복수 문의 예제 선정 방안

4. 실험 결과

5. 결론 및 향후 연구

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-017820199