메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
기계학습의 분류(classification) 기술을 실제 문제에 적용하기 위해서는 카테고리(category)를 부여한 학습예제를 상당수 준비하여야 한다. 예제에 카테고리를 부여(labeling)하는 작업에는 무시할 수 없는 시간과 인력을 필요로 한다. 능동적 학습(active learning)은 동일한 수의 학습예제로 최대한의 성능을 달성하기 위하여 카테고리를 부여할 학습예제를 선별하는 전략이다. 능동적 학습은 현재까지 파악된 정보에 기반하여 분류기(classifier)를 생성하고, 생성된 분류기를 활용하여 카테고리를 부여 받았을 때 가장 이득이 큰 예제들을 선정하여 사 ... 전체 초록 보기

목차

요약

1. 서론

2. 군집화 기법을 이용한 최초학습예제 선정 방안

3. 실험 결과

4. 결론 및 향후 연구

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017882483