메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
연속 음성 인식을 하는 경우에 많은 에러가 발생한다. 특히 기능어의 경우나 서술어의 경우에는 동시 조음 현상에 의한 음운 변화에 의해 빈번한 에러가 발생한다. 이러한 빈번한 에러를 수정하기 위한 방법에는 언어 모델의 개선과 음향 모델의 개선등을 통한 인식을 향상과 여러 단계의 인식과정을 두어 서로 다른 언어 모델을 적용하는 등의 방법이 있지만 모두 시간과 비용이 많이 들고 각각의 상황에 의존적인 단점이 있다. 따라서 본 논문에서 제안하는 방법은 이것을 수정하기 위해 음성 인식기로부터 인식되어 나온 결과 문장을 정답과 비교, 학습함으로써 빈번하게 발생하는 에러 패턴을 통계적 방법에 ... 전체 초록 보기

목차

요약

1. 개요

2. 후처리 모듈을 이용한 에러 수정

3. 실험 및 평가

4. 결론

5. 향후 과제

6. 참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017833364