메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김성동 (한성대학교) 박성훈 (모비젠 R&D 연구소)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제15권 제3호
발행연도
2009.9
수록면
53 - 65 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
영한 기계번역에서 영어 단어의 품사결정은 번역할 문장에 사용된 어휘의 품사 모호성을 해소하기 위해 필요하다. 어휘의 품사 모호성은 구문 분석을 복잡하게 하고 정확한 번역을 생성하는 것을 어렵게 한다. 본 논문에서는 이러한 문제점을 해결하기 위해 어휘 분석 이후 구문 분석 이전에 품사 모호성을 해소하려 하였으며 품사 모호성을 해소하기 위한 CatAmRes 모델을 제안하고 다른 품사태깅 방법과 성능 비교를 하였다. CatAmRes는 Penn Treebank 말뭉치를 이용하여 Bayesian Network를 학습하여 얻은 확률 분포와 말뭉치에서 나타나는 통계 정보를 이용하여 영어 단어의 품사를 결정을 한다. 본 논문에서 제안한 영어 품사결정 모델 CatAmRes는 결정할 품사의 적정도 값을 계산하는 Calculator와 계산된 적정도 값에 근거하여 품사를 결정하는 POSDeterminer로 구성된다. 실험에서는 CatAmRes의 동작과 성능을 테스트 하기 위해 WSJ, Brown, IBM 영역의 말뭉치에서 추출한 테스트 데이터를 이용하여 품사결정의 정확도를 평가하였다.

목차

1. 서론
2. 관련 연구 및 기계번역의 문제점
3. CatAmRes:품사 모호성 해소를 위한 품사결정 모델
4. 실험
5. 결론
참고문헌
Abstract
저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-003-001908047