메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 전자공학회논문지 CI편 제42권 제5호
발행연도
2005.9
수록면
69 - 78 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
고차원 공간상의 벡터들 간의 유클리드 거리를 빠르게 계산하는 것은 멀티미디어 정보 검색을 위하여 매우 중요하다. 본 논문에서는 고차원 공간상의 두 벡터들 간의 유클리드 거리를 효과적으로 근사하는 방법을 제안한다. 이러한 근사를 위하여 두 벡터들의 놈(norm)을 사용하는 방법이 기존에 제안된 바 있다. 그러나 기존의 방법은 두 벡터간의 각도 성분을 무시하므로 근사 오차가 매우 커지는 문제점을 가진다. 본 연구에서 제안하는 방법은 기준 벡터라 부르는 별도의 벡터를 이용하여 추정된 두 벡터간의 각도 성분을 그들을 위한 유클리드 거리 근사에 사용한다. 이 결과, 각도 성분을 무시하는 기존의 방법과 비교하여 근사 오차를 크게 줄일 수 있다. 또한, 제안된 방법에 의한 근사 값은 유클리드 거리 보다 항상 작다는 것을 이론적으로 증명하였다. 이는 제안된 방법을 이용하여 멀티미디어 정보 검색을 수행할 때 착오 기각이 발생하지 않음을 의미하는 것이다. 다양한 실험에 의한 성능 평가를 통하여 제안하는 방법의 우수성을 규명한다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 관련 연구

Ⅲ. 제안하는 기법

Ⅳ. 응용

Ⅴ. 성능 평가

Ⅵ. 결론

참고문헌

저자소개

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018061673