메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 현실 세계의 불확실한 환경을 극복하기 위한 방법 중 하나로 베이지안 네트워크(Bayesian network; BN)가 부각되고 있다. BN의 파라메터 학습은 주어진 평가 척도에 따라 데이타의 훈련집합에 가장 잘 부합되는 네트워크 파라메터를 구하는 것으로, BN 설계에 드는 시간과 노력을 줄이기 위해 연구되어 왔다. 기존의 오프라인 학습은 학습에 필요한 충분한 양의 데이타를 모으기에는 많은 노력과 시간이 필요하다. 또한 현실세계는 불완전성을 포함하고 있어 완전한 데이타를 얻기 힘들다. 본 논문에서는 불완전한 데이타로부터 온라인으로 BN 파라메터를 학습하는 방법을 제안한다. 이 방법은 불완전한 데이타로부터 학습이 가능하도록 하여 학습의 유연성을 높이고, 실시간 학습을 통해 변화하는 환경에 대한 적응성을 높인다. Cohen 등이 제안한 온라인 파라메터 학습방법인 Voting EM 알고리즘과 비교 실험한 결과, 완전한 데이타를 가지고 학습한 경우에는 동일한 학습 결과를, 그리고 불완전한 데이타의 경우에는 보다 나은 학습 결과를 얻었다.

목차

요약
Abstract
1. 서론
2. Voting EM 알고리즘
3. 불완전한 데이타로부터 BN 파라메터의 온라인 학습방법
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017560502