메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제33권 제5호(네트워크 및 서비스)
발행연도
2008.5
수록면
304 - 309 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 시계열 예측 모델을 이용하여 웜 또는 바이러스 등과 같은 공격 트래픽에 의해 네트워크상에 발생할 수 있는 트래픽 이상 징후를 탐지할 수 있는 예측 모델 기반 트래픽 이상 징후 탐지 기법을 제안한다. 제안 기법은 비교적 정확한 예측모델로 알려져 있는 ARIMA 모델을 이용하였고 이상 징후 여부를 확률값으로 변화하여 확률 임계값에 따라 이상 징후를 탐지하도록 하여 그 성능을 극대화할 수 있도록 하였다. 이를 위해 제안기법을 네트워크상에 발생시킨 웜과 같은 비정상 공격 트래픽을 포함한 전체 트래픽과 웹 트래픽에 적용하여 트래픽의 이상 징후를 신뢰성 있는 수준에서 탐지함을 보여주었다. 이 기법을 네트워크 기반의 침입탐지시스템에 적용할 경우에 큰 효과 가져올 수 있을 것이다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안하는 이상 징후 탐지 기법
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-567-014725569