메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문은 선형분류기인 LDA 융합모델과 최소거리패턴분류법을 이용한 얼굴표정인식 알고리즘 연구에 관한 것이다. 제안된 알고리즘은 얼굴 표정을 인식하기 위해 두 단계의 특징 추출과정과 인식단계를 거치게 된다. 먼저 특징추출 단계에서는 얼굴 표정이 담긴 영상을 PCA를 이용해 고차원에서 저차원의 공간으로 변환한 후, LDA 이용해 특징벡터를 클래스 별로 나누어 분류한다. 다음 단계로 LDA융합모델을 통해 계산된 특징벡터에 최소거리패턴분류법을 적용함으로서 얼굴 표정을 인식한다. 제안된 알고리즘은 6가지 기본 감정(기쁨, 화남, 놀람, 공포, 슬픔, 혐오)으로 구성된 데이터베이스를 이용해 실험한 결과, 기존알고리즘에 비해 향상된 인식률과 특정 표정에 관계없이 고른 인식률을 보임을 확인하였다.

목차

요약
1. 서론
2. 웨이브렛 변환
3. 얼굴 표정 인식 알고리즘
4. 시뮬레이션 및 결과 및 고찰
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014884725