메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이대종 (충북대학교) 전명근 (충북대학교)
저널정보
한국조명·전기설비학회 조명·전기설비학회논문지 조명·전기설비학회논문지 제24권 제8호
발행연도
2010.8
수록면
55 - 61 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 클래스 내와 클래스 간의 분산정보를 이용한 주파수 성분의 선택적 추출기법과 PCA-ELM 기반의 유도전동기 고장진단 시스템을 제안한다. 제안된 방법은 취득된 전류신호를 DFT에 의해 주파수 영역으로 변환한 후 분산정보를 이용하여 고장상태별로 차별성이 큰 순서대로 주파수 성분을 추출한다. 다음 단계로 선택된 주파수 성분에 대해서 PCA를 이용하여 고장상태별 특징들을 추출한다. 마지막 단계는 학습속도가 매우 우수한 ELM분류기에 의해 유도전동기의 상태를 진단하게 된다. 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.

목차

요약
Abstract
1. 서론
2. 제안된 유도전동기 고장진단 알고리즘
3. 실험 및 결과
4. 결론
감사의 글
References
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-565-002822190