메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
폭소노미(Folksonomy)는 자유롭게 선택된 키워드의 집합인 태그를 이용하여 이루어지는 협업적 분류로서 웹 2.0의 대표 요소이다. 폭소노미는 기존 분류 방법인 택소노미(Taxonomy)에 비해 적은 비용으로 구축할 수 있다는 장점이 있으나 택소노미에 비해 계층적, 체계적 구조가 부족하다는 단점을 가지고 있다. 이에 폭소노미에 존재하는 집단 지성을 학습하여 웹 자원을 분류할 수 있는 분류기를 구축할 수 있다면 기존 방법인 택소노미를 적은 비용으로 구축할 수 있을 것이다. 본 논문에서는 Slashdot.org에 구축되어 있는 폭소노미를 대상으로 일반적 모델을 정의하고 이 안에서 안정성이 존재함을 보임으로써 분류기를 생성할 수 있는 집단 지성이 폭소노미에 실제로 존재함을 보인다. 그리고 이 집단 지성으로부터 형성되는 범주 별 태그의 특징인 안정성 값을 이용하여 SVM으로 분류기를 구축하는 방법을 제안한다. 실제로 우리가 제안하는 방법으로 폭소노미로부터 높은 정확도로 택소노미를 구축하였음을 실험을 통해 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 범주 별 태그의 안정성
4. 태그된 자원(Tagged Resource)의 분류 기법
5. 성능평가
6. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018447413