메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신동근 (삼육대학교) 장진홍 (경원대학교) 이상홍 (경원대학교) 임준식 (경원대학교) 이정현 (인하대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제9권 제7호
발행연도
2009.7
수록면
19 - 26 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)과 웨이블릿 변환(wavelet transforms, WT)을 이용하여 Creighton University Ventricular Tachyarrhythmia Database(CUDB)의 심전도 신호로부터 정상리듬(normal sinus rhythm, NSR)과 심실 빈맥/세동(ventricular tachycardia/fibrillation, VT/VF)을 검출하는 방안을 제시하고 있다. NEWFM에서 사용할 특징입력을 추출하기 위해서 첫 번째 단계에서는 웨이블릿 변환을 이용하여 스케일 레벨 3과 레벨 4의 주파수 대역에서 d3과 d4의 계수들을 각각 선택하였다. 두 번째 단계에서는 d3과 d4의 계수들에 대한 구간별 표준편차를 이용하여 8개의 특징입력을 추출하였다. NEWFM은 이들 8개의 특징입력을 이용하여 정상리듬과 심실 빈맥/세동을 검출하였고 그 결과로 90.1%의 검출성능을 나타내었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 심실 빈맥/세동 검출 모델의 개요
Ⅲ. 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership Function, NEWFM)
Ⅳ. 실험 결과 (Experimental Results)
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-018553983