메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재식 (아주대학교) 정미경 (ING 생명)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제14권 제4호
발행연도
2008.12
수록면
179 - 200 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 사례기반 추론 기법을 대상으로 효율성과 효과성을 함께 증진시킬 수 있는 속성선정 방법을 개발하였다. 기본적으로, 본 연구에서 개발한 속성선정 방법은 기존에 개발된 단변량 분석 방법과 LVF 알고리즘을 통합하는 것이다. 먼저, 단변량 분석 방법 중 선택효과를 사용하여 전체 속성 중에서 예측력이 우수하다고 판단되는 일부분의 속성들을 추려낸다. 이 속성들로부터 생성해낼 수 있는 모든 가능한 부분집합을 생성해낸 후에, LVF 알고리즘을 이용하여 이 부분집합들이 가지는 불일치 비율을 평가함으로써 최종적으로 속성 부분집합을 선정한다. 본 연구에서 개발한 속성선정 방법을 UCI에서 제공하는 데이터 집합들에 적용하여 성능을 측정한 후, 기존 기법의 성능들과 비교한 결과, 본 연구에서 개발된 속성선정 방법이 선정된 속성의 개수도 만족할만하고 적중률도 향상되어서, 효율성과 효과성 모두의 측면에서 우수함을 보였다.

목차

1. 서론
2. 이론적 배경
3. UV 알고리즘의 설계 및 구현
4. UV 알고리즘의 성능
5. 결론 및 향후 연구 과제
참고문헌
Abstract
저자소개

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-300-018836151