메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
우종석 (서울대학교) 최명환 (강원대학교) 이범희 (서울대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제15권 제6호
발행연도
2009.6
수록면
619 - 625 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
FastSLAM which uses the Rao-Blackwellized particle filter is one of the famous solutions to SLAM (Simultaneous Localization and Mapping) problem that estimates concurrently a robot’s pose and surrounding environment. However, the particle depletion problem arises from the loss of the particle diversity in the resampling process of FastSLAM. Then, the performance of FastSLAM degenerates over the time. In this work, DIR (Density Information-based Resampling) technique is proposed to solve the particle depletion problem. First, the cluster is constructed based on the density of each particle, and the density of each cluster is computed. After that, the number of particles to be reserved in each cluster is determined using a linear method based on the distance between the highest density cluster and each cluster. Finally, the resampling process is performed by rejecting the particles which are not selected to be reserved in each cluster. The performance of the DIR proposed to solve the particle depletion problem in FastSLAM was verified in computer simulations, which significantly reduced both the RMS position error and the feature error.

목차

Abstract
Ⅰ. 서론
Ⅱ. Factored Solution to the Simultaneous Localization and Mapping(FastSLAM)
Ⅲ. Density Information-based Resampling (DIR)
Ⅳ. 시뮬레이션 결과
Ⅴ. 결론
참고문헌

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-001334031