메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김경민 (강남대학교)
저널정보
한국주거환경학회 주거환경 住居環境 통권 제14권 제3호 (통권 제33호)
발행연도
2016.9
수록면
29 - 40 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently machine learning algorithms begun Bigdata were blast incorporated into the AlphaGo apartments investment value of the Real Estate market forecast analysis. This has been an opportunity to increase the accuracy of the prediction. Such a prediction based on the accuracy of the analysis and cluster analysis logit analysis presents the major variables that affect the investment value determined through is significant on the point.
Existing public housing research was concentrated on the macroscopic analysis. Through predictive analytics, machine learning algorithms have enabled the microscopic research combined with traditional statistical approaches.
Machine learning algorithms for investment value of predictive analytics for Apartment Housing Price Determinants seen a person in the study was adopted. Based on the accuracy of these machine learning algorithms through C5.0, SVM, RF, K-means, logit analysis was conducted to determine the investment value factor analysis apartments. 3 May 2016 by the actual transaction data to the Bundang apartment investment decisions and investment determinants of cross sectional data were collected to analyze the data from the Ministry of Land and Real Estate Statistics Korea Appraisal Board. Column 17 and is composed of 220 data is Low.
The column was composed of variable volumes per minute for apartments for rent and sale actual transaction size individual cases. 220 cases of the trading population was subjected to empirical analysis to the sample.
It is significant to make predictive analytics a public housing developers, and take advantage of investors, end users, investment in real estate policy makers judged through machine learning.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 논의와 선행연구 검토
Ⅲ. 아파트 거래 특성 및 연구모형
Ⅳ. 실증분석
Ⅴ. 결론
참고문헌

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-595-001565558