메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이강현 (조선대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제54권 제5호 (통권 제474호)
발행연도
2017.5
수록면
42 - 47 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 디지털 영상의 배포에서, 위·변조에 사용되는 미디언 필터링 (Median Filtering : MF)을 분류하는 포렌식 검출 알고리즘을 제안한다. 이러한 문제를 해결하기 위한 특징벡터는 영상의 에지 검출량 정보 32, 64, 128에 대한 허프변환(Hough Transform)에 의하여, 각 허프라인 (Hough Line)의 양끝 좌표값과 Angle-Distance 좌표상의 허프픽크치 (Hough Peaks)를 조합하여 42-Dim.으로 구성하였다. 변조된 영상들 중에서 미디언 필터링을 분류하는 검출기는 SVM (Support Vector Machine)에서 특징벡터를 학습하여 구현되었다.
제안된 미디언 필터링 검출 알고리즘은 특징벡터의 길이가 10-Dim.의 MFR (Median Filtering Residual) 스킴 및 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 원영상, 평균필터링 (3×3), JPEG (QF=90, 70) 압축, 가우시안 필터링 (3×3, 5×5) 영상 모두에서 미디언 필터링의 포렌식 분류율이 99% 이상의 성능을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 제안된 MF 분류의 특징벡터 추출과 알고리즘
Ⅳ. 실험 및 성능평가
Ⅴ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-000888443