메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiao Han Liu (Changchun University of Science and Technology) Seng Fat Wong (University of Macau)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.17 No.1
발행연도
2018.3
수록면
72 - 81 (10page)
DOI
10.7232/iems.2018.17.1.072

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Sustainable manufacturing considers that efficiently controlling the early stages of a manufacturing system is an important issue for industry enterprise. However, the data collected at this point is usually limited due to cost and time issues, making it difficult to realize the real situation in the production process. One of the ways to solve this problem is to use a small data build prediction system, such as the various grey methods. Although the grey forecasting model has been successfully adopted in various fields and demonstrated promising results, it can still be further improved. Meanwhile, Chinese bicycles have had a tremendous effect on society. This paper thus combines Chinese bicycle industry proposes a new way to improve forecasting accuracy. The new prediction model is called Rolling-TDEGM(1, 1). The grey model contributes to forecasting the future demand, and the TDE method is applied to optimize the parameters of grey model based on the minimization of forecasting error. Also, the rolling mechanism can keep the real-time data. In this experimental study, the public dataset and a real case are used to confirm the effectiveness of the proposed model; the experiment indicates that the Rolling-TDE-GM(1, 1) can significantly improve prediction precision.

목차

ABSTRACT
1. INTRODUCTION
2. THE MAIN DATA OF THE BICYCLE IN CHINA
3. METHODOLOGY
4. VERIFICATION OF THE PROPOSED METHOD’S EFFICIENCY AND GENERATION PERFORMANCE FOR CHINESE BICYCLE INDUSTRY
5. CONCLUSION
REFERENCES

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0