메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sangjung Park (Hoseo University) Sunyoung Park (Yonsei University) Jungho Kim (Yonsei University) Sungwoo Ahn (Yonsei University) Kwang Hwa Park (Yonsei University Wonju) Hyeyoung Lee (Yonsei University)
저널정보
대한의생명과학회 대한의생명과학회지 대한의생명과학회지 제24권 제1호
발행연도
2018.3
수록면
9 - 14 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Ki-67 has been widely performed and become an important biomarker in worldwide clinics, but the standard cut off value of Ki-67 index in breast cancer is still controversy. The objective study was to understand the Ki-67 in breast cancer subtypes and to investigate relative risk of breast cancer subtypes according to Ki-67 cut off value in Korean breast cancer. Immunohistochemical staining (IHC) for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 index was examined from 123 breast cancer patients. Ki-67 index was significantly overexpressed in PR, ER, and HER2 hormone negative groups. Ki-67 index in Triple negative and HER2 subtypes was shown significantly higher than that in Luminal A and Luminal B subtype. Then, we compared the relative risk of each subtype according to 14% and 20% Ki-67 cut off value, which were applied in most clinics. Especially, 20% Ki-67 cut off value in HER2 and Triple negative subtypes was shown 8.41 fold and 2.83 fold higher relative risk than this in Luminal A subtype. Moreover, Ki-67 index in HER2 2+ or 3+ status showed significantly overexpressed than this in HER2 1+ status. At the 20% Ki-67 cut off value, HER2 1+ or 2+ status and 3+ status showed significant difference. Therefore, the 20% Ki-67 cut off value will be useful as a precise prognostic management and helpful for interpreting diverse outcomes of other subtypes in breast cancer patients.

목차

INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-510-001903486