메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Min-Woo Na (Korea University) Tae-Jung Kim (Korea University) Jae-Bok Song (Korea University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
1,703 - 1,707 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study discusses data-based failure state estimation of the mobile IT parts assembly using a 6 DOF manipulator. A position control-based robotic assembly is fast and simple for automation of production lines. However, when the assembly fails, it is very difficult to find the error that causes the assembly to fail. And the worker should stop and intervene in the assembly process to compensate the error. This is time-consuming and inefficient for the productivity of factory automation. To compensate the error without the aid of worker, this study presents a method for assembly failure state estimation. First, the failure state modeling of the mobile IT parts assembly is proposed. And the supervised learning was used for training whose input is the F/T sensor data and whose output is the failure state of the assembly. Furthermore, it is shown that artificial neural network (ANN) can lead to a higher classification accuracy for estimating the failure state and faster prediction.

목차

Abstract
1. INTRODUCTION
2. MODELING OF ASSEMBLY FAILURE STATE
3. DATA ACQUISITION AND SUPERVISED LEARNING
4. EXPERIMENTAL RESULTS
5. CONCLUSION
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003540458