메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승연 (세종대학교)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제29권 제6호
발행연도
2018.11
수록면
1,391 - 1,408 (18page)
DOI
10.7465/jkdi.2018.29.6.1391

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
관심의 대상이 되는 사건이 발생할 때까지 걸리는 생존시간을 다루는 생존분석의 가장 큰 특성은 생존시간이 완전하게 관측되지 않고 중도 절단 된다는 점이다. 이러한 중도절단자료의 특성을 고려하여 추정, 검정 및 모형적합에 대하여 고전적인 생존분석 방법들이 많이 개발되어져 왔으나, 마이크로 어레이자료를 시작으로 대용량의 유전체 자료가 수집되면서 유전적 정보와 생존시간과의 연관성 연구가 진행되면서 표본의 수에 비하여 엄청나게 많은 수의 유전정보 변수들을 다루는 새로운 통계적인 방법들이 생존자료에 확장되었다. 결과적으로 기존의 임상자료로만 구축된 통계예측모형에 유전체 정보가 추가적으로 고려됨으로써 생존함수에 대한 예측력이 향상되었고, 개인의 유전정보에 따라 더 적합한 치료방법이나 치료약을 개발해야 한다는 개인맞춤의학의 필요성이 부각되기 시작되었다. 다양한 첨단 생물학 기술을 통하여 서로 다른 형태의 대용량의 유전체 자료를 통합하는 방법론에 대한 연구들이 이루어지면서 기계학습 방법이 생존분석에 접목되어 많은 연구방법들이 개발되고 있다. 본 연구에서는 기존의 임상자료를 기반으로 분석하는 전통적인 생존분석 방법들을 소개하고, 고차원의 유전체 자료를 분석하기 위한 생존분석 방법들과 통합적인 유전체 자료분석을 위하여 생존분석에 접목된 기계학습방법들에 대하여 간략하게 살펴보고자 한다.

목차

요약
1. 서론
2. 생존분석의 기초적 이론과 함수들
3. 전통적인 생존분석방법
4. 유전체 자료분석을 위한 생존분석방법
5. 기계학습을 활용한 생존분석방법
6. 결론
References
Abstract

참고문헌 (59)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-041-000212011