메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한진단검사의학회 Annals of Laboratory Medicine Annals of Laboratory Medicine 제30권 제4호
발행연도
2010.1
수록면
357 - 363 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background : The prostate-specific antigen (PSA) is considered the most useful among tumor markers currently used. However, its quantitative results are interpreted only qualitatively for the diagnosis of prostate cancer. The recently introduced information theory enables the information of the quantitative results transformed into Shannon’s entropy (S) that represents uncertainties and then “1-S” representing diagnostic certainty. Methods : The 882 urological patients enrolled were categorized into 2 groups: a patient group comprising 233 patients with prostate cancer and a disease control group comprising 649 patients with benign prostate disease. The level of PSA in all the patients was tested and was found to be ≥2 ng/mL. The variables like PSA level and age were modeled on logistic regression analysis to predict the probability of prostate cancer and the diagnostic certainty. Results : The mean (SD) of PSA levels in the patient group and the disease control group were 44.5 ng/mL (37.62 ng/mL) and 5.7 ng/mL (3.70 ng/mL), respectively. The logistic regression model fitted well when the age variable was dichotomized at the age of 55 yr. The diagnostic certainty was lowest at a PSA level of 18.90 ng/mL in the <55-yr age group, and 15.45 ng/mL in the >55-yr age group. Conclusions : The diagnostic certainty (1-S) of whether to diagnose prostate cancer or not at a certain PSA level could be obtained using the information theory. The methodology used in this study may help interpret the results of other quantitative tests. (Korean J Lab Med 2010;30:357-63)

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0