메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한진단검사의학회 Annals of Laboratory Medicine Annals of Laboratory Medicine 제38권 제6호
발행연도
2018.1
수록면
569 - 577 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: The increasing prevalence of drug-resistant tuberculosis (TB) infection represents a global public health emergency. We evaluated the usefulness of a newly developed multiplexed, bead-based bioassay (Quantamatrix Multiplexed Assay Platform [QMAP], QuantaMatrix, Seoul, Korea) to rapidly identify the Mycobacterium tuberculosis complex (MTBC) and detect rifampicin (RIF) and isoniazid (INH) resistance-associated mutations. Methods: A total of 200 clinical isolates from respiratory samples were used. Phenotypic anti-TB drug susceptibility testing (DST) results were compared with those of the QMAP system, reverse blot hybridization (REBA) MTB-MDR assay, and gene sequencing analysis. Results: Compared with the phenotypic DST results, the sensitivity and specificity of the QMAP system were 96.4% (106/110; 95% confidence interval [CI] 0.9072–0.9888) and 80.0% (72/90; 95% CI 0.7052–0.8705), respectively, for RIF resistance and 75.0% (108/144; 95% CI 0.6731–0.8139) and 96.4% (54/56; 95% CI 0.8718–0.9972), respectively, for INH resistance. The agreement rates between the QMAP system and REBA MTB-MDR assay for RIF and INH resistance detection were 97.6% (121/124; 95% CI 0.9282–0.9949) and 99.1% (109/110; 95% CI 0.9453–1.0000), respectively. Comparison between the QMAP system and gene sequencing analysis showed an overall agreement of 100% for RIF resistance (110/110; 95% CI 0.9711–1.0000) and INH resistance (124/124; 95% CI 0.9743–1.0000). Conclusions: The QMAP system may serve as a useful screening method for identifying and accurately discriminating MTBC from non-tuberculous mycobacteria, as well as determining RIF- and INH-resistant MTB strains.

목차

등록된 정보가 없습니다.

참고문헌 (1)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0