메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제18권 제3호
발행연도
2016.1
수록면
1,259 - 1,270 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Managing text-based information is crucial when trying to extract valuable information from documents. This research studied the quantification of unstructured text and its forecasting power. In order to examine unstructured information related to predictive models, documents generated on Naver (a Korean web portal site) from January, 2009 to September, 2015 were used to investigate and predict changes in consumption of four different types of vegetables in South Korea. To quantify the text-based unstructured information, several methods were proposed, such as the amount of search keyword, the amount of buzzword, degree-centrality-weighted term frequency, IDF weighted term frequency, and skewness- weighted term frequency. These methods tracked the keywords in the document and their numerical weights to score individual terms co-occurred with each type of vegetable. Statistical analyses were then conducted to verify the stationarity and cointegration. In addition, VEC system was used to estimate the relationship between consumption of each type of vegetable and quantified text-based unstructured information. Afterwards, Granger causality tests were conducted to verify the effects from the quantified unstructured information to the consumption rather than vice versa.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0