메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국해운물류학회 해운물류연구 해운물류연구 제43호
발행연도
2004.1
수록면
0 - 0 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we propose the Aggregated Performance Index method. This study applies Aggregated Performance Index to provide an efficiency measurement for international ports. The Aggregated Performance Index technique is powerful in resolving the measurement of port efficiency and ranking of port, because Aggregated Performance Index has been applied to analyze the relative efficiency of decision-making units (DMUs) in a set of multiple inputs and multiple outputs, and don't require an explicit a priori determination of relationships between outputs and inputs. Using multidimensional scaling (MDS) process, we adjustment and present an alternative that is theoretically and practically superior to the most common methods proposed in the past papers, especially in the DMUs measure field. This method overcomes the problem of Data Envelopment Analysis method which can neither rank efficiency of ports nor show the real efficiency distance of DMUs. Thus, the Aggregated Performance Index method is useful in wide array of Australian and other international ports' ranking.Finally this Aggregated Performance Index method is applied to the ranking of 16 international ports. As a result, five ports, the port of Melbourne, the port of Osaka, the port of Zeebrugge, the port of Brisbane, and the port of Fremantle are found to be the most inefficient ports. Six other international ports, the port of Tanjung Priok, the port of Hamburg, the port of Sydney, the port of Tilbury, the port of Yokohama, and the port of La Spezia, which are found to be efficient ports. The port of Singapore, the port of Hong Kong, the port of Felixstowe, the port of Rotterdam, and the port of Keelung are found to be the most efficient ports.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0