메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김상혁 (Hanbat National University) 이재흥 (Hanbat National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제4호
발행연도
2019.12
수록면
199 - 205 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 소프트웨어 환경에서 비트연산을 최적화 하고 DNN으로 응용하는 방법을 제안한다. 이를 위해 비트연산 최적화를 위한 패킹 함수와 DNN으로 응용을 위한 마스킹 행렬 곱 연산을 제안한다. 패킹 함수의 경우는 32bit의 실제 가중치 값을 2bit로 변환하는 연산을 수행한다. 연산을 수행할 땐, 임계값 비교 연산을 통해 2bit 값으로 변환한다. 이 연산을 수행하면 4개의 32bit값이 1개의 8bit 메모리에 들어가게 된다. 마스킹 행렬 곱 연산의 경우 패킹된 가중치 값과 일반 입력 값을 곱하기 위한 특수한 연산으로 이루어져 있다. 그리고 각각의 연산은 GPU 가속기를 이용해 병렬로 처리되게 하였다. 그 결과 HandWritten 데이터 셋에 환경에서 32bit DNN 모델에 비해 약 16배의 메모리 절약을 볼 수 있었다. 그럼에도 정확도는 32bit 모델과 비슷한 1% 이내의 차이를 보였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-056-000378387