메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서찬양 (POSTECH) 서영주 (POSTECH) 김동주 (POSTECH)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제4호(통권 제193호)
발행연도
2020.4
수록면
19 - 27 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 정압기의 이상 상태 진단을 위한 기계학습 방법을 제안한다. 일반적으로 설비의 이상 상태 탐지를 위한 기계학습 모델 구현에는 관련 센서의 설치와 데이터 수집 과정이 동반되나, 정압기는 설비 특성상 안전문제에 매우 민감하여 추가적인 센서 설치가 매우 까다롭다. 이에 본 논문에서는 센서의 추가 설치 없이 정압기 설비에서 자체 수집되는 유량과 유압 데이터만을 가지고 정압기의 이상 상태를 조기에 판단하는 기계학습 모델을 제안한다. 본 논문에서는 정압기의 비정상데이터가 충분하지 않은 관계로, 모델 학습 시 오버 샘플링(Over-Sampling)을 적용하여 모델이 모든 클래스에 균형적으로 학습하도록 하였다. 또한, 그레이디언트 부스팅(Gradient Boosting), 1차원 합성곱 신경망(1D Convolutional Neural Networks), LSTM(Long Short-Term Memory)등의 기계학습 알고리즘을 적용하여 정압기의 이상 상태를 판단하는 분류모델을 구현하였고, 실험 결과 그레이디언트 부스팅 알고리즘이 정확도 99.975%로 가장 성능이 우수함을 확인하였다.

목차

[Abstract]
[요약]
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Experiment and Result
Ⅴ. Conclusions
REFERENCES

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0