메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한신경정신의학회 PSYCHIATRY INVESTIGATION PSYCHIATRY INVESTIGATION 제17권 제3호
발행연도
2020.1
수록면
193 - 206 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Despite several pharmacological options, the clinical outcomes of major depressive disorder (MDD) are often unsatisfactory. Personalized psychiatry attempts to tailor therapeutic interventions according to each patient’s unique profile and characteristics. This approach can be a crucial strategy in improving pharmacological outcomes in MDD and overcoming trial-and-error treatment choices. In this narrative review, we evaluate whether sociodemographic (i.e., gender, age, race/ethnicity, and socioeconomic status) and clinical [i.e., body mass index (BMI), severity of depressive symptoms, and symptom profiles] variables that are easily assessable in clinical practice may help clinicians to optimize the selection of antidepressant treatment for each patient with MDD at the early stages of the disorder. We found that several variables were associated with poorer outcomes for all antidepressants. However, only preliminary associations were found between some clinical variables (i.e., BMI, anhedonia, and MDD with melancholic/atypical features) and possible benefits with some specific antidepressants. Finally, in clinical practice, the assessment of sociodemographic and clinical variables considered in our review can be valuable for early identification of depressed individuals at high risk for poor responses to antidepressants, but there are not enough data on which to ground any reliable selection of specific antidepressant class or compounds. Recent advances in computational resources, such as machine learning techniques, which are able to integrate multiple potential predictors, such as individual/ clinical variables, biomarkers, and genetic factors, may offer future reliable tools to guide personalized antidepressant choice for each patient with MDD.

목차

등록된 정보가 없습니다.

참고문헌 (144)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0