메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soo-Ho Tae (Korea Maritime & Ocean University) Soo-Hwan Lee (Korea Maritime & Ocean University) Hong-Il Seo (Korea Maritime & Ocean University) Dong-Hoan Seo (Korea Maritime & and Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제44권 제4호
발행연도
2020.8
수록면
318 - 324 (7page)
DOI
10.5916/jamet.2020.44.4.318

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Wi-Fi fingerprints are widely applied in indoor positioning as the indoor environment is generally non-line-of-sight (NLOS). To improve their performance through combination with deep learning, further studies are being actively conducted. Existing deep learning-based fingerprints require relearning when the positioning environment changes owing to the radio map, which is a signal strength pattern, being directly memorized using weights. In this paper, we propose a fingerprint positioning network based on radio map encoding that can rebuild the positioning systems with only a small amount of additional learning by solving this data dependency. The proposed network comprises an encoding network that uses a radio map as a feature vector and a location network that estimates the location based on the measured Wi-Fi signal. By vectorizing the radio map, the encoding network can recover by only re-measurement of the service space even if the environment changes. In addition, as the positioning network estimates the current location by considering the past location, the estimation accuracy is high even when the noise in the Wi-Fi signal becomes severe. This study demonstrated the superiority of the proposed network by comparing it with two other networks and improving the maximum error distance of 1.28 m.

목차

Abstract
1. Introduction
2. Related Work
3. Fingerprint Positioning Network
4. Experiment and Evaluation
5. Conclusion
References

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0