메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hong-Il Seo (Korea Maritime & Ocean University) Ju-Won Bae (Korea Maritime & Ocean University) Hyung-Rae Cho (Korea Maritime & Ocean University) Ju-Hyeon Seong (Korea Maritime & Ocean University) Dong-Hoan Seo (Korea Maritime & and Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제44권 제6호
발행연도
2020.12
수록면
494 - 499 (6page)
DOI
10.5916/jamet.2020.44.6.494

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Image dehazing, which aims to recover a clear image solely from a hazy or foggy image, is a particularly challenging task. Many studies have recently been conducted to improve the performance of image dehazing using deep neural networks. However, existing approaches do not consider changes in haze density, and thus even if a clear image is input, distortions such as sharpening may occur. In addition, because the number of datasets available in deep learning, whose contents are image pairs of hazy and corresponding haze-free (ground truth) indoor images, is quite limited, the haze removal performance may be reduced. To solve this problem, in this paper, a selective dehazing system is proposed that combines a haze detection network and a dehazing network. The proposed haze detection network is designed using a CNN structure to determine the haze density of the input image, and the use of the dehazing network is determined. The proposed dehazing network uses the U-Net model to efficiently learn only a limited number of datasets. To evaluate the performance of the proposed network, only 45 O-Hazes were used. The result of haze detection shows that the probability of detecting a haze image is more than 99% and the probability of detecting a haze-free image is 97.9%. Dehazing evaluation results improved the PSNR and SSIM by more than 10% compared to existing networks.

목차

Abstract
1. Introduction
2. Related Studies
3. Proposed Method
4. Experiment
5. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-559-001450399