메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lei, Ying (Department of Civil Engineering, Xiamen University) Luo, Sujuan (Department of Civil Engineering, Xiamen University) Su, Ying (Department of Civil Engineering, Xiamen University)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제18권 제3호
발행연도
2016.1
수록면
375 - 387 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The classical Kalman filter (KF) can provide effective state estimation for structural identification and vibration control, but it is applicable only when external inputs are measured. So far, some studies of Kalman filter with unknown inputs (KF-UI) have been proposed. However, previous KF-UI approaches based solely on acceleration measurements are inherently unstable which leads to poor tracking and fictitious drifts in the identified structural displacements and unknown inputs in the presence of measurement noises. Moreover, it is necessary to have the measurements of acceleration responses at the locations where unknown inputs applied, i.e., with collocated acceleration measurements in these approaches. In this paper, it aims to extend the classical KF approach to circumvent the above limitations for general real time estimation of structural state and unknown inputs without using collocated acceleration measurements. Based on the scheme of the classical KF, an improved Kalman filter with unknown excitations (KF-UI) and without collocated acceleration measurements is derived. Then, data fusion of acceleration and displacement or strain measurements is used to prevent the drifts in the identified structural state and unknown inputs in real time. Such algorithm is not available in the literature. Some numerical examples are used to demonstrate the effectiveness of the proposed approach.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0