메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Woojin Chung (Korea University) Hyowon Cho (Korea University) Sanghoun Song (Korea University)
저널정보
한국언어학회 언어 언어 제45권 제3호
발행연도
2020.9
수록면
671 - 701 (31page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, deep learning research has required a huge resurgence of interests in the domain of MultiWord Expressions (MWEs). Neural networks now reached a sufficiently high level of performance and MWEs, which is a notably unique and important unit, should be examined to improve the performance of the model. In the scope of our research, we have engineered a MWE list that various NLP tasks could leverage. While some MWE lists are already available, such as the phrasal expression list and PHaVe list, they only provide a narrow range of MWEs and are intended for a receptive purpose. Our MWE list contains a wide range of MWEs with the level of difficulty of each MWE. It covers almost every MWE that native speakers know of. In addition, we constructed the list of general-purpose by applying the unit of lemma. Performance of MWE processing will be improved as we used refined dictionary data and considered direct object of phrasal verbs. The development and rationale of the list will be discussed below and the analysis that measures the quantity of MWEs in each level are in one-stop and IELTS corpus. Our list will increase the MWE processing capacity for NLP tasks as well as pedagogical usage by education for L2 learners.

목차

1. Introduction
2. The concept of MWE
3. Conceptualize the MWE lists
4. Compiling the MWE list
5. Leveling the list
6. Analysis
7. Conclusion
References

참고문헌 (52)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-701-001291485