메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
33 - 37 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Quadrotor, as an unmanned aerial vehicle, has significant potential among military and commercial applications and is utilized in various fields. As the quadrotor usage is more popularized, fault diagnosis becomes important for safe quadrotor flight. In this work, we use data-driven approaches which generally do not require a complex model of quadrotor to detect and to isolate an actuator fault in a quadrotor. We made a circuit that artificially blocks a motor signal to stop the propeller motor and collected real-time sensor measurements in a normal condition and each actuator’s fault condition. Then, we applied various statistical analysis techniques on the collected data to train the diagnosis model and used this model on the new data to test and to compare the performance of the techniques. Those techniques are linear discriminant analysis, principal component analysis, multi-principal component analysis, fisher discriminant analysis, partial least squares regression, and canonical variate analysis. Among the techniques, partial least squares regression shows the best performance for detecting and isolating an actuator fault of a quadrotor.

목차

Abstract
1. INTRODUCTION
2. EXPERIMENTAL SETUP
3. MULTIVARIATE STATISTICALANALYSIS TECHNIQUES
4. RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001571076