메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영주 (한밭대학교)
저널정보
한국영어학회 영어학 영어학 Volume.21
발행연도
2021.1
수록면
435 - 449 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study investigates the relationship between text cohesion features and English proficiency for Korean college students. That is, it examines how cohesion features can be used to distinguish among essays written by different English proficiency levels. The ICNALE (International Corpus Network of Asian Learners of English) corpus was employed in this study and 600 essays on two prompts (i.e., smoking and part-time jobs) written by Korean students were analyzed. The Tool for the Automatic Analysis of Cohesion (TAACO), the recently-developed program for automatic analysis of cohesion, was employed. Two statistical analyses were performed; a multivariate analysis of variance (MANOVA) and a stepwise discriminant function analysis. Results of the study showed that cohesion feature indices were significantly affected by English proficiency, implying that essays written by Korean students with different English proficiency levels can be differentiated in terms of various cohesion features. Results of a stepwise discriminant function analysis revealed that the best predictor for distinguishing three groups of English proficiency is pronoun density. High–level Korean students produced more cohesive essays than mid- or low-level students in that they used pronouns, overlapping arguments, and lemmas as a way for liking ideas across sentences. However, high–level students underused connectives, compared with low-level students. Implications of this study for English writing pedagogy are also discussed.

목차

ABSTRACT
1. 서론
2. 선행 연구 검토 및 비교
3. 연구 방법
4. 연구 결과
5. 결론
참고 문헌

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0