메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
선우영민 (Pukyong National University) 이원창 (Pukyong National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제25권 제2호
발행연도
2021.6
수록면
337 - 343 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
심층 강화학습은 학습자가 가공되지 않은 고차원의 입력 데이터를 기반으로 최적의 행동을 선택할 수 있게 하는 인공지능 알고리즘이며, 이를 이용하여 장애물들이 존재하는 환경에서 모바일 로봇의 최적 이동 경로를 생성하는 연구가 많이 진행되었다. 본 논문에서는 복잡한 주변 환경의 이미지로부터 모바일 로봇의 이동 경로를 생성하기 위하여 우선 순위 경험 재사용(Prioritized Experience Replay)을 사용하는 Dueling Double DQN(D3QN) 알고리즘을 선택하였다. 가상의 환경은 로봇 시뮬레이터인 Webots를 사용하여 구현하였고, 시뮬레이션을 통해 모바일 로봇이 실시간으로 장애물의 위치를 파악하고 회피하여 목표 지점에 도달하는 것을 확인하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 관련기술
Ⅳ. 심층 강화학습 훈련 결과
Ⅴ. 심층 강화학습 훈련 결과
Ⅵ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-056-001925926