메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
편동현 (Hongik University) 표창우 (Hongik University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제8호(통권 제221호)
발행연도
2022.8
수록면
69 - 75 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 주행 경로의 소요 시간 예측의 정확도를 높이기 위해 인공 신경망을 사용하여 링크 속도로부터 각 차로 별 속도를 예측하는 방법을 제시하였다. 링크를 통과하는 차량의 소요 시간은 해당 링크 끝의 교차로에서 직진하거나 우회전하거나 좌회전하는 방향에 따라 링크를 지나가는 소요 시간이 다르게 관찰된다. 따라서, 차량의 진행 방향에 따라 속도를 예측하는 것이 필요하다. 대구광역시 국채보상로의 공평네거리와 이를 중심으로 인접한 4개 교차로에서 측정한 데이터를 정제하여 학습과 검증에 필요한 데이터를 구성하였고, 5개의 신경망 모델을 사용하였다. 또한 예측 결과의 오류 분석을 수행하여 연구 목적에 적합한 신경망을 실험적으로 선별하였다. 실험 결과, 각 차로 별 소요 시간 예측에 대한 오차가 직진 차로는 17.4%, 우회전 차로는 4.4%, 좌회전 차로는 3.9% 감소하였다. 이 결과는 링크 하나의 분석 결과로 경로 전체를 대상으로 한다면 효과는 더욱 커질 것으로 예상한다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Related Work
Ⅲ. Composition of learning data
Ⅳ. Experimental results and analysis
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0