메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박선후 (전남대학교) 윤준석 (전남대학교) 유석봉 (전남대학교) 한승회 (전남대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제8호
발행연도
2022.8
수록면
1,121 - 1,129 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
RGB 이미지를 활용하는 다양한 객체 인식 분야에서 조도가 어둡거나 특정 물체에 의해 가려진 환경에서의 RGB 이미지는 객체 인식 성능 저하를 일으킨다. IR 이미지는 가시광선이 아닌 적외선 파동을 감지하기 때문에 이러한 환경에서 강인한 객체 인식 성능을 가질 수 있고, RGB-IR 이미지 쌍을 가지고 각자의 강점을 결합 하는 것을 통해 객체 인식 성능을 향상시킬 수 있다. 본 논문에서는 RGB-IR 이미지 쌍의 강점만을 결합하여 객체 인식 성능을 향상시키는 다중 스펙트럼 융합 모델인 high-frequency interchange network (HINet)을 제안한다. HINet은 RGB-IR 이미지 간 주요 정보를 교환하기 위해 두 가지 객체 인식 모델을 mutual high-frequency transfer (MHT)를 이용하여 연결하였다. MHT에서는 RGB-IR 이미지 쌍 각각을 discrete cosine transform (DCT) 스펙트럼 도메인으로 변환하여 고주파 정보를 추출한다. 추출된 고주파 정보는 서로의 네트워크에 전달되어 객체 인식성능 향상을 위해 활용되어 진다. 실험 결과는 제안하는 네트워크의 우수성을 보이며 다중 스펙트럼 객체 인식 성능을 향상시키는 것을 확인할 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구 동향
Ⅲ. 제안 방법
Ⅳ. 실험 결과
Ⅴ. 결론 및 향후연구
REFERENCES

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001639614