메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Min Kyoung Kim (Kyung Hee University) Geonha Park (Kyung Hee University) Seon-Pyo Hong (Kyung Hee University) Young Pyo Jang (Kyung Hee University)
저널정보
한국생약학회 Natural Product Sciences Natural Product Sciences Vol.27 No.4
발행연도
2021.12
수록면
264 - 273 (10page)
DOI
10.20307/nps.2021.27.4.264

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Simultaneous quantification of multiple marker compounds in herbal medicine by high performance liquid chromatography (HPLC) analysis is still a challenge due to the complexity in various parameters to be considered and co-existing multi-components. As a case study, a reliable HPLC method for simultaneous quantification of paeoniflorin from Paeoniae Radix and decursin from Angelicae Gigantis Radix in various commercial herbal medicine was developed based on analytical quality by design (AQbD) strategy. As a first step, risk assessment was performed to select the critical method parameters (CMPs) which were decided as organic mobile phase ratio and column oven temperature. In order to evaluate the effect of the CMPs on critical method attributes (CMAs) of peak resolution and tailing, central composite design (CCD) was employed. The final chromatographic conditions were optimized as follows: column- C18, 4.6 × 250 mm, 5 μm particle size; mobile phase- A: acetonitrile, B: 0.1% acetic acid water; detection wavelength- 235 nm for paeoniflorin, 325 nm for decursin; column oven temperature- 25oC; flow rate- 1.0 mL/min; gradient mobile phase system as Time (min) : % A, 0:14, 25:14, 30:50, 60:50, 61:100, 65:100, 66:14, 75:14. The method was successfully validated according to the International Conference on Harmonization (ICH) guidelines and piloted for ten commercial herbal medicines.

목차

Abstract
Introduction
Experimental
Result and Discussion
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0