메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Donghun Wang (Kyungpook National University) Jonghyun Lee (Kyungpook National University) Minchan Kim (Kyungpook National University) Insoo Lee (Kyungpook National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
500 - 503 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Lithium-ion batteries are generally used in electric vehicles, mobile phones, and lap-tops. Such batteries demonstrate advantages such as environmental-friendliness, high energy density, and long life. However, if not continuously monitored, battery overcharging and over-discharging may occur. Overcharging causes fire and explosion casualties, and overdischarging causes a reduction in the battery capacity and life. In addition, the internal resistance of such batteries varies depending on the external temperature of the batteries, and as the temperature decreases, the capacity of the batteries decreases as well. In this paper, we propose a method for estimating the state of charge (SOC) using a
neural network model best suited for the external temperature of such batteries. Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle-driving simulator. The experimental data were provided as inputs to multi-layer neural network (MNN). The MNN models were trained and optimized for specific temperatures measured during the experiment, and the SOC was estimated by selecting the most suitable model for a temperature. The experimental results revealed that such an estimation of the SOC was better than that using conventional methods.

목차

Abstract
1. INTRODUCTION
2. VEHICLE-DRIVING SIMULATOR
3. PROPOSED SOC ESTIMATION METHOD
4. RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0