메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김혜경 (숭실대학교) 도미라 (숭실대학교) 최재섭 (숭실대학교) 최정일 (숭실대학교)
저널정보
한국서비스경영학회 서비스경영학회지 서비스경영학회지 제24권 제1호
발행연도
2023.3
수록면
26 - 54 (29page)
DOI
10.15706/jksms.2023.24.1.002

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The AI-recommended system-based fashion subscription services are becoming a shopping model that provides new shopping methods through convergence with deep learning AI technology to meet consumers" personalization, fashion styling, and shopping needs. However, previous studies related to the fashion business mainly focused on developing AI recommendation systems or studying AI application cases, but there is a limit to understanding the behavioral patterns of fashion consumers. Therefore, it is meaningful to analyze consumers" purchasing intention to use these new technology-based subscription services.
This study attempted to identify the main causal variables that affect the intention to use the fashion subscription service. The proposed research model and hypothesis were verified through a Partial Least Squares Structural Equation Modeling based on a survey of 430 consumers. It examined the relationship between these factors affecting the intention to use through perceived value based on the value-based adoption model. This research found that service convenience has a major influence on perceived usefulness in relation to benefits, and recency on perceived enjoyment. On the contrary, it was found that special preferential benefits for privacy concern and recency for subscription costs had the greatest positive and negative effects, respectively. In the case of AI-recommended system-based fashion subscription services, this study also suggested it is important to provide customers with a convenient, easy-to-use system and up-to-date products. It is also theoretically meaningful to apply the value-based acceptance model in the relationship between he characteristics of AI recommendation-based subscription services and intention to use.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구방법
Ⅳ. 실증분석 결과
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-324-001322997