메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정승우 (순천향대학교) 이채혁 (순천향대학교 환경보건학과) 이종화 (순천향대학교) 장봉기 (순천향대학교)
저널정보
한국환경보건학회 한국환경보건학회지 한국환경보건학회지 제47권 제5호
발행연도
2021.10
수록면
496 - 503 (8page)
DOI
10.5668/JEHS.2021.47.5.496

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Considering the expenses of and difficulties in arsenic speciation by high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), alternative measurement methods should be useful, especially for large-scale research and projects. Objectives: A measurement method was developed for arsenic speciation using HPLC-atomic fluorescence spectrometry (HPLC-AFS) as an alternative to HPLC-ICP-MS. Methods: Total arsenic and toxic arsenic species in some seafoods were determined by atomic absorption spectrometry coupled with hydride vapor generation (AAS-HVG) and HPLC-AFS, respectively. Recovery rate of arsenic species in seafood was evaluated by ultra sonication, microwave and enzyme (pepsin) for the optimal extraction method. Results: Limits of detection of HPLC-AFS for As3+, dimethylarsinate (DMA), monomethylarsonate (MMA) and As5+ were 0.39, 0.53, 0.60 and 0.64 μg/L, respectively. The average accuracy ranged from 97.5 to 108.7%, and the coefficient of variation was in the range of 1.2~16.7%. As3+, DMA, MMA and As5+ were detected in kelp, the sum of toxic arsenic in kelp was 40.4 mg/kg. As3+, DMA, MMA and As5+ were not detected in shrimp and squid, but total arsenic (iAS and oAS) content in shrimp and squid analyzed by AAS-HVG were 18.1 and 24.7 mg/kg, respectively. Conclusions: HPLC-AFS was recommendable for the quantitative analysis method of arsenic species. As toxic arsenic species are detected in seaweeds, further researches are needed for the contribution degree of seafood in arsenic exposure.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0