메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
A. F. Abd El‑Rehim (King Khalid University) D. M. Habashy (Ain Shams University) H. Y. Zahran (King Khalid University) H. N. Soliman (Ain Shams University)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.27 No.10
발행연도
2021.10
수록면
4,084 - 4,096 (13page)
DOI
10.1007/s12540-020-00940-1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An artificial neural network (ANN) model was used for the simulation and prediction of the mechanical properties ofSn-9Zn-Cu solder alloys. Sn-9Zn-Cu solder alloys containing different Cu contents (0, 1, 2, 3, 4 and 5 wt%) were successfullyprepared by permanent mold casting. The specimens were heated in a protective argon atmosphere at 433 K for 24 h,followed by water quenching at 298 K. Finally, the heat-treated samples were aged at 373 K for different time intervals (ta = 2,4, 8, 16 and 32 h), followed by water quenching at 298 K. The phases present in the current alloys were detected by X-raydiffraction analysis. For morphological characterization, a scanning electron microscope operated at 20 kV was tilized. Themechanical properties of the samples were studied using hardness measurements. The variations in the hardness data withincreasing aging time were determined based on the structural transformations that take place in the alloys. The ANN modelwas applied to the hardness measurements to simulate and predict the Vickers hardness of Sn-Zn-Cu alloys with mean squareerror values equal 9.55E-06 and 9.44E-06 for training and validation data respectively after 281 epochs. The simulated andpredicted results were consistent with the experimental results.

목차

등록된 정보가 없습니다.

참고문헌 (52)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0