메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
심윤택 (국립과학수사연구원) 정예훤 (국립과학수사연구원) 김이석 (가톨릭대학교) 엄나현 (국립과학수사연구원) 최승규 (국립과학수사연구원) 오세민 (국립과학수사연구원) 박지환 (국립과학수사연구원) 김동영 (국립과학수사연구원) 구형남 (국립과학수사연구원)
저널정보
대한법의학회 대한법의학회지 대한법의학회지 제45권 제3호
발행연도
2021.8
수록면
79 - 86 (8page)
DOI
https://doi.org/10.7580/kjlm.2021.45.3.79

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study performed the forensic anthropological sex estimation of Koreans in a non-metric way by reconstructing three-dimensional (3D) computed tomography (CT) images of skulls. The skull CT images used in this study were 100 (51 males, 49 females), and all CT images were taken with a slice thickness of 0.75 mm and then reconstructed into 3D images using the MIMICS 23.0 program. Using the reconstructed 3D image, measurements were repeated twice. The sex determination was male if the 4 point to 5 point was relatively more in five landmarks, and female if the points of 1 to 2 were relatively more. Results of the study show that, 88 of the 100 cases matched the actual sex. Among the 12 discrepant cases, ten cases were mismatched with the actual sex even though the estimation and repeated estimation readout of sex estimating were the same. Two cases, were “unknown,” showing different sexes in the first and repeated estimations. In conclusion, this study indicated that a forensic anthropological analysis from 3D images provided accurate point information on the landmarks of skulls, showing as high an accuracy as the sex estimation method using real bones. The ten cases of sex mismatch, except the two “Unknown” cases, are considered to be errors that did not consider differences in population groups. In further studies, further establishing a non metric, specifically Korean methods to increase the accuracy and reliability of sex estimation is need.

목차

등록된 정보가 없습니다.

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0