메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Moon, Jongwoo (Korea Environment Institute)
저널정보
한국기후변화학회 한국기후변화학회지 Journal of Climate Change Research Vol.14 No.5
발행연도
2023.10
수록면
569 - 586 (18page)
DOI
10.15531/ksccr.2023.14.5.569

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Demand-side approaches become an important pillar for energy analysis, and their roles for achieving climate targets have been increasingly emphasized globally. Particularly, Korea is one of the countries experiencing a rapid transition of demographic and household structures, and accordingly, the current and future energy demand could be significantly affected. As per the importance of the understanding the energy demand characteristics, this study contributes to understanding the electricity consumption of households by analyzing how the various household characteristics can be used to understand the household’s electricity consumption with household-level survey and machine learning techniques. This study utilizes the Household Energy Standing Survey published in 2022 and selects key household, housing, and appliance ownership and usage characteristics from the entire dataset. Afterward, the study applies Support Vector Machine, Random Forest, and Decision Tree classifiers to classify the household’s monthly electricity consumption. The results suggest that the Random Forest classifier provides slightly better performances in general compared to the other models. Moreover, the feature importance suggests that the housing characteristics, such as the size of housing, and appliance usage information, and some household characteristics, such as the number of household members and household income, are relatively important features for classification. Although the study finds some evidence of the importance of household and behavioral information in understanding the household’s electricity consumption, the study also identifies the limitation of the survey dataset in extracting the behavioral information.

목차

ABSTRACT
1. Introduction
2. Material and Methods
3. Results
4. Conclusions and Discussions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0