메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Alexis Richard C. Claridades (University of Seoul) Hyun-Sang Choi (Korea Institute of Civil Engineering and Building Technology) Jiyeong Lee (University of Seoul)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제41권 제5호
발행연도
2023.10
수록면
351 - 365 (15page)
DOI
10.7848/ksgpc.2023.41.5.351

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Spatial data is important for virtually representing the real world and is essential in developing applications for making informed decisions. With the growing interest in seamless indoor-outdoor environments, spatial data from different sources exists in various formats for use in LBS (Location-Based Services). Previous research has utilized deep learning for indoor omnidirectional images to generate NRS (Node-Relation Structure), a network-based topological data, for supporting spatial analysis for navigation while providing visualization. This study proposes an approach to detect building entrances in street view omnidirectional images through a deep learning-based object detection algorithm for supporting indoor-outdoor LBS. This paper focuses on formulating refinement conditions for constructing an image training dataset that combines both an open dataset and directly captured omnidirectional images to address the challenge of establishing a huge volume of images for training the object detection model. By applying the conditions, the mAP (mean Average Precision) of 61.20% obtained from training with open data increased to 85.72%, and applying image augmentation methods improved the mAP to 87.42%. These results show that the proposed conditions can be used as a framework for constructing generalized training data that results in accurate entrance detection in street view images, regardless of the study area.

목차

Abstract
1. Introduction
2. Related Literature
3. Methodology
4. Experimental Implementation
5. Conclusions and Recommendations
References

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088339944