메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍윤성 (Jeonbuk National University) 홍석주 (Jeonbuk National University) 강병주 (Korea Automotive Technology Institute) 황윤형 (Jeonbuk National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제72권 제11호
발행연도
2023.11
수록면
1,477 - 1,484 (8page)
DOI
10.5370/KIEE.2023.72.11.1477

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
For the autonomous driving safety, it is important to know the future trajectories of surrounding vehicles, especially during the transition period where the autonomous and non-autonomous vehicles are mixed each other. In this regard, neural-network models including the long short-term memory(LSTM) have demonstrated outstanding performance in the field of vehicle trajectory prediction, but their accuracy significantly decreases in the prediction for abnormal situations, because the dataset for them are usually small-scaled and the prediction results tend to be biased to the maneuvers of large portion. To tackle this problem, we propose a trajectory prediction framework that incorporates classification-based switching mechanism. After the maneuver was classified by the radial basis function(RBF) kernel-based support vector machine(SVM), the prediction results were selectively obtained from multiple LSTM-based prediction models in the proposed framework, where each prediction model was trained with dataset for each maneuver. In this way, the future trajectories could be predicted successfully even for the abnormal maneuvers because the small-scale dataset for them could train the model independently in the proposed framework. The proposed framework was trained and validated with the real trajectory dataset collected at Bang-I Station intersection. The sequence of vehicles’ speed, yaw-rate, latitude and longitude coordinate were used as inputs in the proposed framework.

목차

Abstract
1. 서론
2. SVM 기반의 거동 분류
3. LSTM 기반의 스위치 방식 경로 예측
4. 실험
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0