메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김해정 (성신여자대학교) 김해정 (성신여자대학교) 이영주 (성신여자대학교)
저널정보
복식문화학회 복식문화연구 복식문화연구 제31권 제3호
발행연도
2023.6
수록면
330 - 345 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study aimed to categorize consumers using super app functional characteristics to identify demographic differences, and analyze shopping orientations by consumer type. This data can be used by fashion and beauty companies for product planning and marketing strategies. To categorize super app consumers, data were analyzed with SPSS v.26.0 software using frequency, factor, reliability K-mean cluster, and distributed analyses, one-way-ANOVAs, and Scheffe verification. Cross-analysis was conducted to correlate super app consumer types with demographic characteristics. One-way-ANOVAs and Scheffe verification were used to analyze the differences in shopping preferences between super app consumer groups. As a result of our analyses, super app consumers were classified into four types: the ration type, the low-use type, the multifunction type, and the habit type. There were statistically significant differences between these types in age, occupation, marital status, average monthly household income, and shopping impact factors. Five super app user shopping orientations were identified: brand pursuit, pleasure pursuit, trend pursuit, risk perception, and economic orientation. The differences in the preferred orientation between super app consumer types were found to be statistically significant. The majority of respondents were multifunction type consumers. This group used the super app most frequently and effectively. They also demonstrated the highest scores for all five of the shopping orientations. The classification of consumer types in this study will allow the fashion and beauty industries to utilize super apps for more targeted product design and marketing.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0